
From the continuous PV to discrete Painlevé equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 5943

(http://iopscience.iop.org/0305-4470/35/28/312)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/28
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 5943–5950 PII: S0305-4470(02)33093-2

From the continuous PV to discrete Painlevé equations
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Abstract
We study the discrete transformations that are associated with the auto-
Bäcklund of the (continuous) PV equation. We show that several two-parameter
discrete Painlevé equations can be obtained as contiguity relations of PV.
Among them we find the asymmetric d-PII equation which is a well-known
form of discrete PIII. The relation between the ternary PI (previously obtained
through the discrete dressing approach) and PV is also established. A new
discrete Painlevé equation is also derived.

PACS numbers: 02.30.−f, 02.30.Ik, 02.30.Gp

1. Introduction

One of the most interesting relations between continuous and discrete Painlevé equations
(c- and d-P) is that the contiguity relations of the former assume forms which can be found
among the latter. The term ‘contiguity relation’ is used in analogy with the well-known
property of special functions. Indeed, for the solutions of equations of the hypergeometric
family there exist expressions that relate the solutions of the equation for the same value of the
independent variable but different values of the parameters. A large class of d-Pcan be obtained
in this way from the continuous Painlevé equations. One of the very first documented forms of
discrete Painlevé equation, in fact, was the one derived by Jimbo and Miwa as the contiguity
of PII [1] (though it was not identified as a d-P at that time). The systematic derivation of
the contiguity relations for c-P was already proposed in [2] as a means of obtaining new d-P.
The advantage of this construction was that it was based on the Schlesinger/auto-Bäcklund
transformations of the various c-P and thus provided in a straightforward way the Lax pair
of the d-P. Let us show how this construction proceeds. We start with the Lax pair of a
continuous Painlevé equation. It has the general form

ψζ = Aψ (1.1a)

ψt = Bψ (1.1b)
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where ζ is the spectral parameter and A,B are matrices depending explicitly on ζ and the
dependent as well as the independent variables w and t. The continuous Painlevé equation is
obtained from the compatibility condition ψζt = ψtζ leading to

At − Bζ +AB − BA = 0. (1.2)

In general, the Painlevé equation depends on parameters (α, β, . . .) which are associated
with the monodromy exponents θi appearing explicitly in the Lax pair. The Schlesinger
transform relates two solutions ψ and ψ ′ of the isomonodromy problem for the equation
at hand corresponding to different sets of parameters (α, β, . . .) and (α′, β ′, . . .). The main
characteristic of these transforms is that the monodromy exponents (at the singularities of the
associated linear problem), related to the sets (α, β, . . .) and (α′, β ′, . . .) differ by integers (or
half-integers). The general form of a Schlesinger transformation is

ψ ′ = Rψ (1.3)

where R is again a matrix depending on ζ,w, t and the monodromy exponents θi . The
important remark is that (1.1a) together with (1.3) constitute the Lax pair of a discrete
equation. The latter is obtained from the compatibility conditions:

Rζ + RA− A′R = 0. (1.4)

The analysis of the contiguity relations of the various c-P and their associated d-P has been
presented in several papers. In [2], the so-called alternate d-PI was derived from PII (and it was
given already in [1]). The discrete equations associated with the full PIII and the one-parameter
PIII were first derived in [2] and studied in detail in [3, 4]. The asymmetric d-PI related to PIV

was derived in [2] and studied in detail in [5]. Finally, the contiguity of PVI was presented in
[6]. Curiously, the discrete equations associated with PV were never studied systematically.
In [2], three such equations were derived, but two of them were in quite an unusual form; a
clear sign that the derivation was not the proper one. In this paper we plan to remedy this
by examining in detail the possible contiguity relations of PV. We shall show that the three
well-known discrete Painlevé equations can be described in such a way. In the process we
will obtain a fourth, quite new, d-P.

2. The auto-Bäcklund transformations of PV and the elementary Miura

The Painlevé V equation we are going to work with is traditionally written as

v′′ =
(

1

2v
+

1

v − 1

)
v′2 − v′

z
+
(v − 1)2

z2

(
αv +

β

v

)
+
γ v

z
+
δv(v + 1)

v − 1
. (2.1)

Before giving the auto-Bäcklund transformations we introduce a new, more convenient
parametrization. First, through the appropriate scaling of the independent variable z we
put 2δ = −1. We write 2α = (n−p)2, 2β = −(n+p)2, γ = −2q . Furthermore, introducing
the two independent signs ε = ±1, η = ±1, we have

√
2α = ε(n − p),

√−2β = η(n + p).
Thus every instance of PV is characterized by a triplet (n, p, q). We can now give the
auto-Bäcklund [7]:

V = 1 − 2zv

zv′ − ε(n− p)v2 + (ε(n− p)− η(n + p) + z)v + η(n + p)
(2.2)
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which relate v(n, p, q) to V (N,P,Q) where (N, P,Q) are related to (n, p, q) through the
following relations:

N = σq

P =
{
σ
(

1
2 − ηn

)
if εη = 1

σ
(

1
2 − ηp

)
if εη = −1

(2.3)

Q =
{−ηp if εη = 1
−ηn if εη = −1

where σ = ±1. From (2.2) it is clear that the auto-Bäcklund indeed introduces four
transformations depending on the signs of ε, η. We introduce the notation Vε,η in order
to describe this dependence. With the appropriate combinations in (2.2) we find

z

V1,η − 1
− z

V−1,η − 1
= (n− p)(v − 1) (2.4a)

z

Vε,1 − 1
− z

Vε,−1 − 1
= (n + p)

(
1 − 1

v

)
. (2.4b)

It is more convenient now to introduce the variable w = v+1
v−1 (and similarly W = V +1

V−1 )
whereupon we find

W1,η −W−1,η = 4

z

n− p

w − 1
(2.5a)

Wε,1 −Wε,−1 = 4

z

n + p

w + 1
. (2.5b)

In order to proceed, we shall need one other property of the solutions of PV. If v is a
solution of PV with parameters (α, β, γ, δ), then 1/v is also a solution with parameters
(−β,−α,−γ, δ). In order to transcribe this into our parametrization we first note that
v → 1/v corresponds to w → −w. Next, from the form of PV it is clear that the equation
is invariant under a simultaneous change of sign of n and p as well as under the exchange
of n and p. Thus w can be characterized by any of the following four sets of parameters:
(n, p, q), (p, n, q), (−n,−p, q), (−p,−n, q). Similarly −w is associated with the four sets
(n,−p,−q), (p,−n,−q), (−n, p,−q), (−p, n,−q), i.e. w → −w changes the sign of the
third parameter q and that of either n or p.

Next we introduce the shorthand notation:

w̄ = W−1,−1 with parameters
(
q, n + 1

2 , p
)

w
¯

= −W1,1 with parameters
(
q, n− 1

2 , p
)

ŵ = W1,−1 with parameters
(
q, p + 1

2 , n
)

w
ˆ

= −W−1,1 with parameters
(
q, p − 1

2 , n
)
.

We readily see that the bar (¯) denotes evolution in the n direction while the hat (ˆ) is associated
with the p direction. We can now rewrite (2.5) as

ŵ + w̄ = 4

z

n− p

w − 1
= w

ˆ
−w

¯
(2.6a)

and similarly

w
¯

+ ŵ = −4

z

n + p

w + 1
= w̄ +w

ˆ
. (2.6b)
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Equations (2.6a) and (2.6b) constitute the elementary discrete Miuras.

3. Derivation of the discrete Painlevé equations associated with PV

The Miura transformations (2.6) constitute the building blocks for the construction of the
discrete Painlevé equations from the auto-Bäcklund of PV.

The first discrete equation we are going to derive is known as asymmetric d-PII,
which as shown in [8] (where we also obtained its Lax pair) is a discrete form of PIII.
Subtracting the rhs of (2.6b) from that of (2.6a), we find

w̄ +w
¯

= −4

z

(
n + p

w + 1
+
n− p

w − 1

)
= −8

z

nw − p

w2 − 1
. (3.1)

This is not yet the equation we seek because when we move from w to w̄ (or w
¯

) n increases
(decreases) by 1

2 but simultaneously p and q are permuted. This means that when we consider
the equation relating w, w̄ and ¯̄w, we find

w + ¯̄w = −8

z

(
n + 1

2

)
w̄ − q

w̄2 − 1
. (3.2)

Of course, at the level of w̄, ¯̄w and ¯̄̄w we will again find an equation such as (3.1) with (n + 1)
instead of n. Thus the equation related to this evolution has an even/odd dependence in the
additive constant in the numerator as expected for the asymmetric d-PII.

In [9] we studied this equation from the point of view of the self-duality property. Self-
duality in this context means that the same discrete equation describes the evolution along the
independent variable and also along the parameter changes due to Schlesinger/auto-Bäcklund
transformations. The self-duality of asymmetric d-PII is very easy to understand in the frame
of the present derivation. Indeed, adding the rhs of (2.6a) to the lhs of (2.6b), we obtain

ŵ +w
ˆ

= −8

z

pw − n

w2 − 1
. (3.3)

The hat evolution corresponds to a move from p to p± 1
2 while n and q − 1

2 are permuted. In
a perfect parallel to (3.2) we have also

w + ˆ̂w = −8

z

(
p + 1

2

)
ŵ − q

ŵ2 − 1
. (3.4)

Similarly, we could have introduced an evolution along the q direction through w
¯
, w̄, w

ˆ
or ŵ

but not through w: through any point one can evolve in two directions only, since there are
only four auto-Bäcklund transformations of the form (2.2). The result is again an asymmetric
d-PII equation in which q plays the role of the independent variable while n and p enter as the
even/odd dependent constants.

We turn now to another discrete equation which can be obtained from the same Miura
(2.6). From (2.6b) we have

w
¯

+ ŵ = −4

z

n + p

w + 1
. (3.5)

The corresponding parameters of w
¯
, w and ŵ are

(
q, n− 1

2 , p
)
, (n, p, q) and

(
p + 1

2 , q, n
)
,

respectively. We note that going from w
¯

to w to ŵ the parameters of the solution change
according to the following pattern: (φ,ψ, θ) → (

ψ + 1
2 , θ, φ

)
(and at the numerator of

the rhs we have the quantity φ + ψ corresponding to the ‘middle variable’, w in this case,
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so φ + ψ = n + p). Thus schematically we have three different equations along the variables
associated with the triplets:

(θ, φ
˜
, ψ), (φ,ψ, θ), (ψ̃ , θ, φ)

(φ,ψ, θ), (ψ̃, θ, φ), (θ̃ , φ, ψ̃)

(ψ̃, θ, φ), (θ̃ , φ, ψ̃), (φ̃, ψ̃, θ̃ )

where the tilde (˜) means that the particular parameter is incremented by 1
2 .

The corresponding numerators of the rhs are φ + ψ, ψ̃ + θ and θ̃ + φ, respectively. The
next equation would involve the triplets (θ̃ , φ, ψ̃), (φ̃, ψ̃, θ̃ ) and ( ˜̃ψ, θ̃, φ̃) with the numerator
φ̃ + ψ̃ = φ +ψ + 1. It is just the upshift of the first equation. Thus the Miura (3.5) introduces
an equation with ternary symmetry which can be written schematically as

um−1 + um+1 = 2 − 4

z

km

um
(3.6)

with the change of variable u = w + 1. The index m denotes the evolutions from w
¯

to w to
ŵ, etc and from the above analysis one sees that km+3 = km + 1, i.e. k grows linearly with a
superimposed period-3 variation (as k3k ignores θ, k3k+1 ignores φ and k3k+2 ignores ψ , if we
assume that the index of the variable w, say, is an integer multiple of 3).

This equation is well known. In [10], we derived it from the discrete dressing
transformation. While its symmetric (without the ternary dependence) form is a discrete
PI [11], the full equation was shown to be a discrete form of PIV.

In order to derive the next equation we start from the Miura (3.5) and rewrite it as

(w
¯

− 1)(w + 1) + (ŵ + 1)(w + 1) = −2

z

(
2n− 1

2
+ 2p +

1

2

)
. (3.7)

Next we introduce the auxiliary quantity χ and split (3.7) into two equations:

(w
¯

− 1)(w + 1) = −2

z

(
2n− 1

2
+ χ

)
(3.8a)

(ŵ + 1)(w + 1) = −2

z

(
2p +

1

2
− χ

)
. (3.8b)

Similarly, consider the Miura

w + ˘̂w = −4

z

p + q + 1
2

ŵ + 1
(3.9)

where the breve (˘) denotes the evolution in the q direction (which, as we said above, can
go through ŵ) while the numerator p + q + 1

2 is indeed the sum of the parameters along the
directions p and q at ŵ. We can rewrite it as

(w + 1)(ŵ + 1) + ( ˘̂w − 1)(ŵ + 1) = −2

z

(
2p +

1

2
+ 2q +

1

2

)
. (3.10)

Using (3.8b) one sees that

( ˘̂w − 1)(ŵ + 1) = −2

z

(
2q +

1

2
+ χ

)
. (3.11)

Combining (3.8a), (3.8b) and (3.11) we find

( ˘̂w − 1)(w
¯

− 1) = 2

z

(
χ + 2q + 1

2

) (
χ + 2n− 1

2

)
χ − (2p + 1/2)

. (3.12)
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Next we start from (3.8a) and upshift it in all three directions obtaining

( ˘̂w − 1)( ¯̂̆w + 1) = −2

z

(
2n +

1

2
+ ¯̂̆χ

)
. (3.13)

Adding (3.13) to (3.11) we find

( ˘̂w − 1)( ¯̆̂w + ŵ + 2) = −2

z
(2n + 2q + 1 + χ + ¯̂̆χ). (3.14)

We also have one more Miura

ŵ + ¯̂̆w = −4

z

n + q + 1
2

˘̂w + 1
(3.15)

(note that ˘̂w is the variable associated with (q + 1
2 , n, p + 1

2 ), upshifted fromw
¯

at (q, n− 1
2 , p)

in all three directions, and the corresponding numerator is indeed n + q + 1
2 ), so this leads to

( ˘̂w − 1)

(
2 − 4

z

n + q + 1
2

˘̂w + 1

)
= −2

z
(2n + 2q + 1 + χ + ¯̂̆χ) (3.16)

which can be rewritten as

χ + ¯̂̆χ = −4(n + q) + 2
˘̂w + 1

− z( ˘̂w − 1). (3.17)

Equations (3.12) and (3.17) can be written in a simpler way if we introduce ω = w − 1. We
have

˘̂ωω
¯

= 2

z

(
χ + 2q + 1

2

) (
χ + 2n− 1

2

)
χ − 2p − 1/2

(3.18a)

χ + ¯̂̆χ = −4(n + q) + 2
˘̂ω + 2

− z ˘̂ω. (3.18b)

Note thatw = ω+1 is a solution of the continuous PV (though in a form slightly different from
the canonical one) but χ does not: it satisfies some second-order equation which is of degree 4
in χ ′′ and is much too cumbersome to be written here. Equation (3.18) was first derived
in [2], from the Schesinger transformations of PV. It was obtained again in [12] from the
degeneration pattern of the asymmetric q-PIII (discrete PVI) equation [13] and where its Lax
pair has been derived. This equation has been shown to be another discrete form of PIV.

We now turn to yet another discrete equation which can be derived from PV. Our starting
point is again the lhs of the Miura (2.6b):

w
¯

+ ŵ = −4

z

n + p

w + 1
and the discrete relations relating w

¯̄
, w

¯
, w:

w
¯̄

+w = −8

z

(
n− 1

2

)
w
¯

− q

w
¯

2 − 1
(3.19a)

and w, ŵ and ˆ̂w:

w + ˆ̂w = −8

z

(
p + 1

2

)
ŵ − q

ŵ2 − 1
. (3.19b)

Next we consider the discrete Miura equation relatingw
¯̄̂
, w

¯̄
, w

¯
and ŵ, ˆ̂w and ¯̂̂w, respectively:

w
¯̄̂

+w
¯

= −4

z

n + p − 1

w
¯̄

+ 1
ŵ + ¯̂̂w = −4

z

n + p + 1
ˆ̂w + 1

. (3.19c, d)
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Now we introduce the notation check (ˇ) in order to indicate the shift in both n and p, i.e.
(ˇ) = (ˆ̄), x

ˇ
, x, x̌ for the variables w

¯̄̂
, w

¯
and ŵ and the variables w

¯̄
, w and ˆ̂w will be called

y
ˇ
, y, y̌. This is a slight misnomer, as the motion from y

ˇ
to y and from y to y̌ are (¯̄) and (ˆ̂),

respectively, instead of (ˆ̄) each but it ‘averages’ out correctly in the end. We now have the
following succession of variables: . . . , y

ˇ
, x, y, x̌, y̌, . . . . The discrete Painlevé equation then

assumes the form

x + x̌ = −4

z

k + ǩ

y + 1
(3.20a)

y
ˇ

+ y = −8

z

kx − q

x2 − 1
(3.20b)

where k takes the current value of n and p alternatively (so k + ǩ always take the local value of
n + p) and q is constant along this evolution. Indeed, (3.19a) and (3.19b) are two instances of
(3.20b) while the lhs of (2.6b), (3.19c) and (3.19d) are three instances of (3.20a). We readily
note that k in (3.20a) varies depending on the position, i.e. it has an even/odd dependence.
We can rewrite equation (3.20), by eliminating y, as a single equation for x:

k + ǩ

x + x̌
+
k + k

ˇ
x + x

ˇ

− 4 = 2kx − 2q

x2 − 1
. (3.21)

As a matter of fact in equation (3.21) k has an even/odd dependence (which introduces an
extra parameter). Let us point out here that a study of (3.20) using the singularity confinement
integrability criterion predicts precisely this even/odd dependence to be compatible with
integrability.

In the derivation presented above, the equations are given in the forms they occur
naturally with just a minimum of variable transformations. Here we would like to summarize
our findings and present these equations in the usual form. All equations will be written
for a single variable which we will write xm, the independent variable being introduced
zm = δ(m − m0). The step δ is related to the independent variable of the continuous
PV: δ ∝ 1/z. The even/odd or ternary freedom will be introduced through the appropriate
phases and, of course, the corresponding discrete equation could have been written as a system
for more than one dependent variable. Thus we have, for the asymmetric d-PII (3.2), the form

xm+1 + xm−1 = zmxm + a + b(−1)m

x2
m − 1

. (3.22)

For the ternary d-PI (3.6) we find

xm+1 + xm−1 = 1 +
zm + ajm + bj 2m

xm
(3.23)

where j is a (complex) cubic root of unity. Equation (3.18) can be rewritten as

xm−1 + xm = 1

ym
+
zm + a

1 − ym
(3.24a)

ymym+1 = xm − zm

x2
m − b2

(3.24b)

where y = −2/ω. Finally, equation (3.21) can be written as

zm−1 + zm
xm−1 + xm

+
zm+1 + zm
xm+1 + xm

= 1 +
(2zm + a(−1)m)xm + b

x2
m − 1

(3.25)

where two parameters now appear, as expected.
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4. Conclusion

In this paper we have presented a systematic construction of the discrete equations one can
obtain as contiguity relations of the continuous Painlevé V. We have shown how one can relate
some well-known discrete Painlevé equations, namely the asymmetric d-PII (discrete PIII) and
the ternary d-PI (discrete PIV), to PV. Equation (3.18) was already obtained in [2] where
discrete equations were obtained from the Schlesinger transformations of PV. However, the
absence of the guide provided by the geometry of the system, namely the affine Weyl group
A
(1)
3 which describes the transformations of the parameters of PV, resulted in the fact that all

the other equations obtained from PV in [2] were given in a highly unusual, rather intractable,
form. Here the proper use of the geometric guide allowed us not only to recover the previously
known d-P and relate them to PV but also to discover a d-P which has never been encountered
before. We must point out here that, given the richness of the space of A(1)3 , there certainly
exist discrete equations corresponding to more complicated paths. In fact, any nonclosed
pattern, periodically repeated, would lead to some discrete equation, with higher and higher
periodicity.

As we have shown in this paper, the construction of contiguity relations of c-P starting
from the auto-Bäcklund transformations is a fruitful approach. One could thus wonder whether
the same procedure could be applied to the auto-Bäcklund’s discrete Painlevé equations and
thus continue this construction iteratively until all the parameters are exhausted. It has turned
out that this is not possible. The geometry of the underlying transformations is such that all
difference Painlevé equations are self-dual, i.e. the contiguity of a given d-P is a d-P of the same
form. In the case of q-discrete Painlevé equations the same holds true for the vast majority
of equations (although some q-P exist which are not self-dual). What is more intriguing is
that there exist difference Painlevé equations which have four or more parameters and thus
cannot be contiguity relations of the known continuous Painlevé equations. The investigation
of the exact nature of these equations and the derivation of their Lax pair constitute a genuine
challenge.
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